Exercise for Chronic Axial Neck Pain:
Efficacy, Physiology and the NEBH Experience

Carol Hartigan M.D.
New England Baptist Hospital
Harvard Medical School
Neck Pain

Lifetime Incidence 75%
12 mo Prevalence 30-50%
Persistence 16–22%

Not life threatening
Work/life restriction
Most do not seek care
Still among most common complaints
Millions MD visits/alt care
$$$$$$ health care cost
Chronic Neck Pain

Reduced isometric neck strength
Reduced ROM
Increased disability
Fear avoidance
Central sensitization
Greater pain = less strength
Greater neck muscle “fatigue”

• References 1-9 and 28-41
Association of NP with Reduced Strength/ROM

Chicken or egg
Test results may not = true strength
Pain may prevent full effort
Fear and motivation play a role
Exercise makes sense
Systematic Reviews: CNP

Insufficient Evidence
- Mobilization/Manipulation
- Manual therapy
- Traction
- Modalities

Limited Evidence
- Injections
- Surgery

Moderate/Strong Evidence
- Exercise
Randomized Controlled Studies

Chronic axial neck pain
Exercise interventions
High quality studies
Specific neck vs UB vs general
CBT

N=191 (Minnesota, USA)
3 groups, 20 sessions, 11 weeks

• Resisted neck strength with pulley Upper back and shoulder dumbbells AND massage, manip vs.
• MedX, UB strength and stretch vs.
• Massage, manip, sham microcurrent

At one and two year followup
Both exercise groups: Significant

• reduction in pain (5.8-3.0)
• improvement in Strength/ROM
• No change in passive group
Viljanen, Malmivaara et al., BMJ, 2003 (Finland)

N=393 chronic nonspecific neck pain
3 groups, 12 weeks train, 30 min, 3x week, reinforce at 6 mo
• Dynamic UB mm training dumbbells
 large mm groups of shoulder/back
• vs mm and general relaxation
• vs ordinary activity
No direct neck exercises
Same evidence
Viljanen, Malmivaara et al., BMJ, 2003

Pain, disability, ROM, strength reduced all 3 groups 3, 6 and 12 mo
No difference *between* groups
Pain 4.5-2.7
Upper body training not superior to relaxation train or ordinary act advice
Ylinen et al., JAMA, 2003 and J. Strength Cond Res 2006 (Finland)

180 women with CNP (2000-2)
2 treatment groups:
12 45min session, 3x week, maint
• Strength: 80% max band (15 F/E/obl)
• Endurance: head lifts (3x20)
Both
 UB, legs
 Stretch, aerobic and CBT
• Control: Stretch and aerobic
Ylinen et al., JAMA, 2003 and J. Strength Cond Res 2006 (Finland)

Both strength and endurance groups significant improvements in

- Pain (5.7-2.2 and 5.8-1.8)
- Disability (22-14 and 21-12)
- Strength
- Range of motion

Compared to control at 1 year
Ylinen et al., Journal of Rehab Medicine, 2010 (Finland)

Significant reduction in Headache, Arm Pain. Improved HR, QOL. Strength and Endurance groups only at 1 year.
Ylinen et al., Eur J Pain, 2005

12 month followup 180 women
Pressure pain threshold measures at 6 cervical sites and the sternum
Significant increase in pain pressure in both training groups ct baseline
No change in controls
6/6 sites in strength group
4/6 sites in endurance group
At one year
59 women in “stretch and aerobic”
Underwent high intensity training with band at 80%
Significant decrease pain and disability at 2 year followup
Chiu et al, Clin Rehab, 2005 and Spine, 2004 (Hong Kong)

N=145 (>3m, 67% >12m)
2x/wk x 6 wks
• Dynamic flexion and extension vs.
• Control infrared irradiation
At 6 weeks and 6 months exercise significant improved pain, disability and strength, satisfaction
 Pain (39-34%) Disability (29-27%)

N=549 3 groups, 7 diff workplaces
20min, 3x week, 1 year
• Specific resistance to neck and upper body, row/kayak
• All around exercise, equip in work, encourage walk to work, take stairs
• General health group
Neck/Shoulder Pain

At end of one year intervention
Significant reduction in pain in active groups only (5.0-3.4)
Supports neck specific and general exercise
Zebis, et al., BMC Musculoskeletal Disorders, 2011

Denmark, 537 high risk workers
2 groups
20 weeks, 3xweek
• 5 dumbbell exercises vs
• Advice to remain active
Specific exercise group significant reduction in neck and shoulder pain (4.7-1.8)
Evans, Bronfort et al., Spine, 2012, Minnesota

279 subjects with CNP
3 groups
• High Dose Supervised Exercise (ET)
• ET plus spinal manipulation
• Home Exercise Advice

20 one hour sessions over 12 weeks
Vs 2 one hour sessions
Similar Significant Reduction in Pain in Both Exercise Groups

Compared to home exercise group
At 12 and 52 weeks followup
No advantage in manipulation group
Pain 5.6-3.1
Significant improvement in strength, endurance, ROM, satisfaction, disability in both exercise groups
Summary of Active Neck Exercise versus “Other” Studies

5 specific superior to modal, control, radiation, home ex program
No advantage to manipulation
1 study specific AND non specific superior to health advice
1 nonspecific not superior to relax v ord act (all improve)
Cognitive Behavioral Therapy
(ref 24 and 25)

PT with CB orientation superior

- Delivers a message; give permission; educate; try new response; challenge passivity; confront thinking patterns; explore barriers to exercise, success and function; problem solve; set goals; relax; take ownership; challenge effort to achieve desire; delegate specific tasks (laundry, garbage, recreation); undo proscriptions; positive reinforcement “well” behaviors; support, coach; believe; unified team

- Mundane/banal/low tech/ unglamorous/ enthusiasm/ passion/belief/ hope
Cognitive Behavioral Therapy for Neck Pain, Jensen I, Bergstrom et al., Pain, 2005

4 groups N=214, sick list 1-6 mo (blue)
4 w, 4-8 per group
• PT (20 h/w, str, cardio, relax, ind goal, physical and functional, open to PT)
• CBT (13 h/w, goal, plan and set, problem solve, relax, activity pacing, role of vicious circle, sig other, cog cope-imagery, external focus, coping statements
• PT plus CBT versus CG (rx as usual)
Jensen I, Bergstrom et al., Pain, 2005

PT plus CBT superior to other 3
Sick leave, retirement, health-related QOL
201 less sick leave days than CG, 3 year followup
10 year followup 42 fewer sick days per year
Cost effectiveness of two rehabilitation programs

Jensen, Busch, Bodin et al., Pain, 2009, Sweden

Neck and back pain N=255 (27% neck)

7 year followup

• Ortho manual therapy with low intensity exercise versus
• Full time multidisc program (MDP)
• 8h/d, 5d/w, 4w cbt, efficacy, function
Cost effectiveness of two rehabilitation programs

Significantly reduced sickness absence and disability pension
Multidisciplinary program only
Cost reduction 94,500 EUR per pt
Conclusion: CNP

Is safe!!!

Associated with:

• Deconditioning
• Disability
• Fear avoidance/central sensitization

Effective rehabilitation

• Simple progressive exercise
• Cognitive behavioral approach
How Might Exercise Work for Chronic Neck Pain?
Exercise helps

- Reduce pain
- Improve strength and ROM
- Improve function
- Reduce fear-avoidance

HOW?
Individuals with CNP

Atrophic muscle fibers
Mitochondrial damage

Lower trapezius blood flow

- Larsson et al., Pain, 1999
Histology in Neck Pain

Decreased tissue metabolism

- Decrease Na+ and K= pumps and ATP
- Associated with muscle fatigue and pain

- Clausen, Ann NY Acad Sci, mediating activity
Mechanisms potentially reducing pain as a result of muscle training

Endurance and strength training

- Increase Na+ and K+ pump concentration in neck mm
- Improve capillarization

- Leivseth et al., Muscle and Nerve, 1992
Cycling with Relaxed Shoulders for 20 Minutes

Reduced neck pain
Increased trapezius mm oxygenation

• Near infra-red spectroscopy

Linear fashion both nl and CNP
Normals greater 2 minute post ex O2

• Andersen LL et al., Eur J Appl Physiol, 2010
Strength Training

Elicits hypertrophy of neck mm fibers
• Kadi et al., Acta Neuropath, 2000

Transforms catabolic metabolism to anabolic

Increase GH, testosterone
• Hakkinen et al., J Geront A Biol Sci Med, 2000
• Kraemer et al., Eur J Appl Physiol Occ Physiol, 1995

Increases insulin-like growth factor
• Marx et al., Med Sci Sports Ex, 2001
Strength AND Endurance Training

Reduce cytochrome c protein (apoptosis)

Increase capillarization to fibers

- Kadi et al., Acta Neuropath
Strength and Endurance Training

Pain may be relieved by modification of the environment and peripheral nociceptors

- Increased circulation and metabolism
- Clear inflammation and irritants
- Muscle tissue healing
- Strengthen other tissue
Neural Adaptation Due to Training

- **Increased motor unit firing rates**
- **Recruitment high threshold motor units**
- **Improved control over motor units**
Increased Motor Control

Increased activity efferent motor pathways
Increased strength and control
improve stability
Reduce strain on ligaments, joint capsule
Reduce hyperesthesia, stimulate endorphins

• Kettler et al., J Biomech, 2002
Excitation of muscle spindles, Golgi tendon organs and mechanoreceptors around joints from training

Increase activity of efferent nerves

Inhibit small-diameter afferent fibers mediating pain in dorsal horn
Training

Activate descending pain pathways
Supraspinal-thalamus, basal ganglia, periaqueductal grey, pre-frontal, post-parietal cortex
Affect pain perception
Inhibit “central sensitization” associated with CNP (desensitization)
May be affected by belief, behavior, fear, training

• Bonica, Management of Pain, 1990
Emotions and Fear

May exacerbate pain

• Keefe et al., J Pain, 2004

Fear diminished by conscious exercise of areas associated with pain

• Klaber et al., Spine, 2004
Positive Effects of Exercise for Neck Pain

Histologic
Physiologic
Neurologic
Psychologic
Intensive Rehabilitation for Chronic Neck Pain at NEBH

Carol Hartigan M.D.
New England Baptist Hospital
Harvard Medical School

With thanks to Lisa Childs P.T.
NEBH Quality Assessment Database 2009-2010

August 24, 2010
SPSS Paired student t-test
144 CNP patients (23mo)
62% female, mean age 51
Average 9 visits (5-6 weeks)
Pain 5.1-2.9
ODS 26-16
Cervical lift 11-21 lbs
ROM 10°, 14°, 10°, 11°
Goals

Normal
Less illness behavior
Reduce dependence
Resume function
Experience success
Reduce pain
Conclusion: Chronic Benign Axial Neck Pain

Passive treatments unproven

Exercise improves symptoms, function, changes micromilieu

Works at NEBH
References

1. O’Leary et al., Man Ther 2005
2. Barton et al., APMR, 1996
5. Ylinen et al., APMR, 2004
8. Falla et al., Eur J Pain, 2004
10. Bronfort, Evans et al., Spine, 2001 (Minnesota, USA)
11. Evans, Bronfort et al., Spine 2002
12. Viljanen, Malmivaara et al., BMJ, 2003 (Finland)
13. Ylinen et al., JAMA, 2003
15. Ylinen et al., J Rehab Med, 2010
16. Ylinen et al., Eur J Pain, 2005
18. Ylinen et al., Eura Medicophys, 2007
19. Chiu et al., Clin Rehab, 2005 (Hong Kong)
20. Chiu et al., Spine 2004
22. Zebis et al., BMC Musculoskeletal Disorders, 2011
23. Griffiths et al., J Rheum, 2009 (UK)
24. Jensen I, Bergstrom et al., Pain 2005 (Sweden)
25. Jensen, Busch, Bodin et al., Pain, 2009
References

27. Larsson et al., Pain, 1999
30. Leivseth et al., Muscle and Nerve, 1992
31. Andersen LL et al., Eur J Appl Physiol, 2019
32. Kadi et al., Acta Neuropath, 2000
37. Kettler et al., J Biomech, 2002
38. Melzack and Wall, Science, 1965
References

40. Keefe et al., J Pain, 2004
41. Klaber et al., Spine, 2004
THANK YOU!

Carol Hartigan M.D.
New England Baptist Hospital
Harvard Medical School
We can argue about:

The “pain generator”
Best “integrative” approach/passive treatment
Which injection from the menu to choose
Best surgical approach
How to hyperanalyze the anatomy
OR
We can focus on function and choice and challenge